Contribution from the Department of Chemistry, Columbia University, New York, New York 10027, Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, and School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

# Synthesis and Structure of the $[(\eta^5 - C_5H_5)Ti(Mo_5O_{18})]^{3-}$ and $[(\eta^5 - C_5H_5)Ti(W_5O_{18})]^{3-}$ Anions

T. M. CHE,<sup>1a</sup> V. W. DAY,<sup>\*1b</sup> L. C. FRANCESCONI,<sup>1a,c</sup> M. F. FREDRICH,<sup>1b</sup> W. G. KLEMPERER,<sup>\*1a,c</sup> and W. SHUM<sup>1a</sup>

## Received January 30, 1985

Stoichiometric quantities of  $(Mo_2O_7)[(n-C_4H_9)_4N]_2$ ,  $(C_5H_5)_2TiCl_2$ , and water react in CH<sub>2</sub>Cl<sub>2</sub> solution to form  $[(n^5-C_5H_5)Ti(Mo_5O_{18})][(n-C_4H_9)_4N]_3$  (1). The tungsten analogue,  $[(n^5-C_5H_5)Ti(W_5O_{18})][(n-C_4H_9)_4N]_3$  (2), is formed in a similar fashion from stoichiometric quantities of  $(WO_4)[(n-C_4H_9)_4N]_2$ ,  $(C_5H_5)_2TiCl_2$ , and aqueous HCl in CH<sub>3</sub>CN. According to IR and <sup>17</sup>O NMR spectroscopy, anions 1 and 2 are isostructural and are related to the octahedral  $M^{VI}_{6}O_{19}^{2^{-}}$  anions, M = Mo, W, by substitution of  $[M^{VI}O]^{4^{+}}$  units with  $[Ti^{IV}(C_{5}H_{5})]^{3^{+}}$  units. Comparison of structural parameters for anion 1, obtained from a single-crystal X-ray diffraction study [a = 25.162 (9) Å, c = 50.380 (10) Å, Z = 16, space group  $I4_{1}cd-C_{42}^{12}]$ , with known structural parameters for the parent  $M_{0_6}O_{19}^{2^-}$  anion reveals a pattern of trans bond length alternation resulting from the metal center substitution. This bond length alternation provides a mechanism for surface charge delocalization.

#### Introduction

A large family of Mo<sup>VI</sup> and W<sup>VI</sup> polyoxoanion structures is based on neutral M<sup>VI</sup><sub>n</sub>O<sub>3n</sub> cages that encapsulate one or more central, anionic subunits.<sup>2</sup> Each hexavalent metal center in these cages has the local oxygen environment shown in A. Here, a



double line represents a 1.6-1.7-Å metal-oxygen double bond, a single line a 1.8-2.1-Å metal-oxygen single<sup>3</sup> bond, and a dotted line a very weak, >2.2-Å metal-oxygen bond. The M<sup>VI</sup>O<sub>t</sub> units are linked together by doubly bridging O<sub>b</sub> oxygens to form a cage, and the O<sub>c</sub> oxygen is part of a central, anionic subunit. The simplest members of this structural family are the octahedral  $Mo^{VI}_6O_{19}^{2-4}$  and  $W^{VI}_6O_{19}^{2-5}$  anions, whose structures are based on an  $M^{VI}_6O_{18}$  cage encapsulating a central  $O^{2-}$  unit (B).

As might be expected from the bonding scheme A, the Ot and  $O_b$  oxygens that constitute the  $M^{VI}_n O_{3n}$  cage surfaces are quite nonbasic and unreactive.<sup>6</sup> They can be activated, however, by replacing the hexavalent cage metal centers with one or more lower valent metals. In the simplest  $M^{VI}_{6}O_{19}^{2-}$  case, for example, *cis*-

- (3) We refer to bond strength in the electrostatic sense, not bond order in the molecular orbital sense. For bond strength-bond length correlations see: (a) Kihlborg, L. Ark. Kemi 1963, 21, 471-95. (b) Allmann, R. Monatsh. Chem. 1975, 106, 779-93. (c) Schroeder, F. A. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1975, B31, 2294-309. (d) Brown, I. D.; Wu, K. K. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1976, B32, 1957-9.
- (a) Allcock, H. R.; Bissell, E. C.; Shawl, E. T. Inorg. Chem. 1973, 12, 2963-8. (b) Garner, C. D.; Howlader, N. C.; Mabbs, F. E.; McPhail, A. T.; Miller, R. W.; Onan, K. D. J. Chem. Soc., Dalton Trans. 1978,
- A. 1.; Miller, R. W.; Onan, K. D. J. Chem. Soc., Datton Irans. 1978, 1582-9. (c) Nagano, O.; Sasaki, Y. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1979, B35, 2387-9.
  (5) (a) Henning, G.; Hueilen, A. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 1969, 130, 162-72. (b) Kirillova, N. I.; Kolomnikov, I. S.; Zolotarev, Yu. A.; Lysyak, T. V.; Struchkov, Yu. T. Soviet J. Coord. Chem. (Engl. Transl.) 1978, B34, 1764-70. (c) Fuchs, J.; Freiwald, W.; Hartl, H. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1978, B34, 1764-70. (d) LaRue, W. A.; Liu, A. T.; San Fijino I. Ir. Inore. Chem. 1970, 1971, 1972. Filippo, J., Jr. Inorg. Chem. 1980, 19, 315-20.
- A quantitative measure of low surface charge density is provided by heteroconjugation studies, which indicate, for example, that  $Mo_6O_{19}^{2-}$ and  $ClO_4^-$  have comparable hydrogen bond accepting abilities: Barcza, L.; Pope, M. T. J. Phys. Chem. **1975**, 79, 92-3.



 $V_{2}^{V}W_{4}^{VI}O_{19}^{4-}$  is readily protonated,<sup>7</sup> and the *cis*-Nb<sub>2</sub><sup>V</sup>W<sub>4</sub>O<sub>19</sub><sup>4-</sup> anion forms stable adducts with cations such as  $[(OC)_3Mn]^+$ ,<sup>8</sup>  $\{[(CH_3)_5C_5]Rh\}^{2+,9}$   $[(C_7H_8)Rh]^{+,10}$   $H^{+,11}$   $CH_3^{+,11}$  and [(CH<sub>3</sub>)<sub>3</sub>Si]<sup>+,11</sup> This mode of surface activation, however, can present several problems. First, the activated polyoxoanions tend to disorder in the solid state since the penta- and hexavalent cage metals are separated from the cage's exterior environment by a symmetric shell of O<sub>b</sub> and O<sub>t</sub> oxygens and the anions can disorder according to this pseudosymmetry.<sup>12</sup> As a result, structural parameters are available only for the disorder-averaged species and detailed structure-reactivity correlations have been difficult to establish. A second problem, related in part to this pseudosymmetry, is a tendency of the activated polyoxoanions to form mixtures of permutational isomers upon adduct formation. The solvated  $[(OC)_3Mn]^{+8}$  and  $\{[(CH_3)_5C_5]Rh\}^{2+9}$  cations each react with cis-Nb<sub>2</sub>W<sub>4</sub>O<sub>19</sub><sup>4-</sup>, for example, to form a mixture of three diastereomers. A final problem is the potentially nonselective nature of this surface activation, which can result in activation of both the terminal  $(O_t)$  and bridging  $(O_b)$  surface oxygens (C).



- Klemperer, W. G.; Shum, W. J. Am. Chem. Soc. 1978, 100, 4891-3. (a) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. Inorg. Chem. 1985, 24, 44-50. (b) Besecker, C. J.; Klemperer, W. G. J. Am. Chem. Soc. 1980, 102, 7598-7600. (8)
- (9) Besecker, C. J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R. J. Am. Chem. Soc. 1984, 106, 4125-36.
   (10) Besecker, C. J.; Klemperer, W. G.; Day, V. W. J. Am. Chem. Soc. 1982, 104, 6158-9.
- (11) Day, V. W.; Klemperer, W. G.; Schwartz, C., manuscript in preparation
- (a) Botar, A.; Fuchs, J. Z. Naturforsch., B: Anorg. Chem.; Org. Chem.
   1982, 37B, 806-14. (b) Nishikawa, K.; Kobayashi, A.; Sasaki, Y. Bull.
   Chem. Soc. Jpn. 1975, 48, 889-92. (12)

<sup>(1) (</sup>a) Columbia University. (b) University of Nebraska. (c) University of Illinois (current address)

<sup>(2)</sup> Day, V. W.; Klemperer, W. G. Science (Washington, D.C.) 1985, 228, 533-41

In the  $\{[(C_7H_8)Rh]_5(Nb_2W_4O_{19})_2\}^{3-}$  anion, for example,  $Rh^1$  centers are bound to both  $O_t$  and  $O_b$  oxygens.<sup>10</sup>

One solution to the problems just mentioned is activation of  $M^{VI}_{6}O_{19}^{2-}$  surfaces not by replacement of  $M^{VI}$  centers with  $M^{V}$  centers but by replacement of entire  $M^{VI}O_{1}^{4+}$  units by  $[Ti^{IV}_{-}(\eta^5-C_5H_5)]^{3+}$  units (D). This substitution addresses the problems



raised above by (a) introducing an external cage substituent at the metal substitution site that tends to eliminate disorder in crystal packing, (b) introducing a relatively bulky cyclopentadienyl group that sterically shields adjacent Ob oxygens and thus reduces the potential for isomerism in adduct anions, and (c) introducing a structural unit that does not contain a terminal oxygen and therefore tends to activate Ob oxygens selectively (compare C and D). In this paper we describe the synthesis and characterization of the two simplest  $M^{VI}_{6}O_{19}^{2-}$  derivatives that have been activated in this manner, the  $[(\eta^5 - C_5H_5)Ti(Mo_5O_{18})]^{3-13}$  and  $[(\eta^5 - C_5H_5) - C_5H_5]^{3-13}$  $Ti(W_5O_{18})$ <sup>3-</sup> anions. In addition, we present detailed solid-state structural data for the molybdenum complex that in conjunction with <sup>17</sup>O NMR spectroscopic data provide insight into the mechanism of surface activation and charge delocalization in these and related species. The reaction chemistry of the title complexes will be described in future publications.

## **Experimental Section**

Reagents, Solvents, and General Procedures. The following were purchased from commercial sources and used without further purification: 0.4 M aqueous tetra-n-butylammonium hydroxide (Eastman), 1 M methanolic tetra-n-butylammonium hydroxide (Eastman), tungsten trioxide monohydrate (Baker), concentrated HCl (Mallinckrodt), <sup>17</sup>O-enriched water (Monsanto Research), acetone (Fisher), anhydrous diethyl ether (Baker), CD<sub>3</sub>CN (Merck), and CD<sub>2</sub>Cl<sub>2</sub> (Merck). (C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>TiCl<sub>2</sub> (Pressure Chemical) was recrystallized once by cooling a saturated 40  $^\circ$ C CH<sub>2</sub>Cl<sub>2</sub> solution to 0  $^\circ$ C. The precise concentration of aqueous  $(n-C_4H_9)_4$ NOH was determined by titration with 0.10 N HCl to a phenolphthalein endpoint. Procedures described in ref 14 were followed for the preparation of  $(\alpha - Mo_8O_{26})[(n-C_4H_9)_4N]_4$ . Methylene chloride (Baker) was distilled once from  $P_4O_{10}$ , and acetonitrile (Aldrich, 99%) was distilled twice, once from  $P_4O_{10}$  and once from  $CaH_2$ . *n*-Propyl alcohol was also distilled twice, from K2CO3 and then from CaH2. Toluene (MCB) was distilled from sodium-benzophenone ketyl under dinitrogen.

Analytical Procedures. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN, and by the School of Chemical Sciences Microanalytical Laboratory at the University of Illinois.

Infrared spectra were recorded from KBr pellets with a Perkin-Elmer Model 621 spectrometer and were referenced to the 1028-cm<sup>-1</sup> band of a 0.5-mm polystyrene film. Absorptions are described below as follows: very strong (vs), strong (s), medium (m), shoulder (sh), and broad (br).

<sup>1</sup>H NMR spectra were recorded on Perkin-Elmer R32 (90 MHz) and Nicolet NT-360 (360 MHz) spectrometers and referenced internally to (CH<sub>3</sub>)<sub>4</sub>Si. <sup>17</sup>O FTNMR spectra were measured at 13.51 MHz in 10-mm sample tubes with a JEOL PFT/PS-100 spectrometer interfaced with a Nicolet 1080 data system and at 33.93 MHz in 12-mm sample tubes with a spectrometer equipped with a 5.87-T Oxford Instruments magnet and a Nicolet NIC-80 data system and referenced externally to pure H<sub>2</sub>O at 25 °C. Chemical shifts for all nuclei are reported as positive values for resonances that are observed at higher frequency (lower field) than the appropriate reference.

**Preparation of (Mo\_2O\_7)[(n-C\_4H\_9)\_4N]\_2.** This compound was prepared with use of Liu's modification<sup>15</sup> of a literature procedure.<sup>14</sup> A 100-mL

**Table I.** <sup>17</sup>O FTNMR Chemical Shifts and Line Widths for  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^{3-}$  (1) and  $[(\eta^5-C_5H_5)Ti(W_5O_{18})]^{3-}$  (2) as Tetra-*n*-butylammonium Salts in CH<sub>3</sub>CN<sup>*a*</sup>

| assignt <sup>b</sup>                 | 1°                             | <b>2</b> <sup><i>d</i></sup>     | assignt <sup>b</sup> | 1°                                | <b>2</b> <sup><i>d</i></sup>     |  |  |
|--------------------------------------|--------------------------------|----------------------------------|----------------------|-----------------------------------|----------------------------------|--|--|
| OTiM <sub>5</sub><br>OM <sub>2</sub> | 5 (11)<br>516 (93)<br>535 (64) | -62 (18)<br>380 (71)<br>392 (63) | OTiM<br>OM           | 641 (49)<br>834 (93)<br>863 (130) | 544 (56)<br>704 (68)<br>709 (65) |  |  |

<sup>a</sup>Spectra shown in Figure 2; chemical shifts in ppm downfield from pure H<sub>2</sub>O at 25 °C are accurate ±3 ppm; line widths (fwhm) in Hz, ±15 Hz for 1 and ±5 Hz for 2, have been corrected for exponential line broadening and are enclosed in parentheses. <sup>b</sup>Oxygen types are identified by the identity and number of metals each oxygen is bonded to, M = Mo for 1 and W for 2 (see Figure 2). <sup>c</sup>Conditions: 25 °C; 0.23 M; 19 atom % <sup>17</sup>O; 13.513 MHz; 12 000 acquisitions; 4.9 Hz/data point; 7.7-Hz pulse repetition rate; 11-Hz exponential line broadening. <sup>d</sup>Conditions: 79 °C; 0.01 M; 6 atom % <sup>17</sup>O; 33.928 MHz; 218 000 acquisitions; 3.1 Hz/data point; 3-Hz pulse repetition rate; 5-Hz exponential line broadening.

beaker containing a stirring bar was charged with (a-Mo<sub>8</sub>O<sub>26</sub>)[(n- $C_4H_9)_4N]_4$  (5.0 g, 2.3 mmol), 50 mL of  $CH_2Cl_2$ , and 9.5 mL of 1 M methanolic (n-C4H9)4NOH (9.5 mmol). After 20 min of stirring, almost all of the  $(\alpha - Mo_BO_{26})[(n-C_4H_9)_4N]_4$  was dissolved, and the solution was filtered to remove small amounts of solid material. The resulting clear solution was then concentrated on a rotary evaporator to a viscous oil. The oil was then dissolved in 10 mL of acetone and stirred for 5 min. Anhydrous diethyl ether (100 mL) was added to this solution, yielding an oil that became crystalline after ca. 1 min of stirring and scraping with a spatula. The solid was collected by filtration, washed with 20 mL of anhydrous diethyl ether, and dried in vacuo for 2 h to give 5.7 g of crude product. Pure product was obtained by dissolving this white powder in 20 mL of acetonitrile, filtering off any insoluble material, and then carefully adding ca. 11 mL of anhydrous ether, without stirring, to produce a saturated solution. Cooling to 0 °C for 10 h induced the formation of large colorless crystals, which were collected by filtration and dried to vacuo to yield 4.4 g of product (5.6 mmol, 61% based on Mo).

Preparation of  $[(\eta^5 - C_5H_5)Ti(Mo_5O_{18})](n - C_4H_9)_4N]_3$ . This preparation must be carried out in a dinitrogen atmosphere to avoid hydrolysis of the product. A solution of (C5H5)2TiCl2 (0.50 g, 2.0 mmol) in 40 mL of CH<sub>2</sub>Cl<sub>2</sub> was added over a ca. 45-min period with rapid stirring to a solution of deionized water (12 µL, 0.67 mmol) and (Mo<sub>2</sub>O<sub>7</sub>)[(n- $C_4H_9_4N_{2}$  (4.0 g, 5.1 mmol) in 30 mL of  $CH_2Cl_2$ . The reaction was relatively slow, and the rate of (C5H5)2TiCl2 addition was adjusted to match the rate of reaction. This was monitored by observing the color of the reaction solution. Since the product is yellow, the reaction solution took on an orange tint if the red (C5H5)2TiCl2 solution was added too rapidly. Note that the amount of water used (12  $\mu$ L, 0.67 mmol) was less than the stoichiometric quantity (18  $\mu$ L, 1.0 mmol), because the dried solvent contained significant amounts of water. The amount of water added may therefore have to be adjusted, depending on drying efficiency. The total amount of water present is critical since excess water decomposes the product and insufficient water leads to a brown discoloration of the reaction solution, arising presumably from reduction of Mo<sup>VI</sup> by  $C_5H_5$ . Once the reaction was complete, ca. 150 mL of toluene was added and the CH2Cl2 allowed to slowly evaporate under a slow flow of dinitrogen over a period of 2-3 days. The product separated from the reaction solution during this time period as yellow crystals, which were collected by filtration, washed with  $3 \times 25$  mL of anhydrous diethyl ether, and dried to yield 1.9 g of product (1.2 mmol, 58% based on Mo) as a yellow powder. Anal. Calcd for  $C_{53}H_{113}N_3TiMo_5O_{18}$ : C, 39.59; H, 7.08; N, 2.61; Ti, 2.98; Mo, 29.83. Found: C, 39.84; H, 7.49; N, 2.52; Ti, 3.16; Mo, 30.28. IR (KBr, 350-1000 cm<sup>-1</sup>, see Figure 1a): 950 (s), <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 90 MHz):  $\delta$  6.13 (s, C<sub>3</sub>H<sub>3</sub>); 3.2–3.4 (m, NCH<sub>2</sub>); 1.3–1.9 (m, NCH<sub>2</sub>CH<sub>2</sub>; 0.9–1.2 (m, CH<sub>3</sub>). <sup>17</sup>O NMR: see Table I and Figure 2a.

Material enriched in <sup>17</sup>O was prepared under a dry  $N_2$  atmosphere from enriched water and  $(Mo_2O_7)[(n-C_4H_9)_4N]_2$  enriched with use of the procedure described in ref 14. All <sup>17</sup>O-enriched molybdates were stored and handled under dry  $N_2$  to avoid isotopic dilution.

**Preparation of (WO**<sub>4</sub>)[ $(n-C_4H_9)_4$ N]<sub>2</sub>. To a hot (80 °C) solution of 0.35 M aqueous  $(n-C_4H_9)_4$ NOH (487 mL, 170 mmol) was added WO<sub>3</sub>·H<sub>2</sub>O (22 g, 88 mmol) with stirring in ca. 3-g increments over a 5-min period. When the addition was complete, the reaction mixture was stirred for 5-10 min at 80 °C and then cooled to room temperature and filtered to remove undissolved WO<sub>3</sub>·H<sub>2</sub>O. The resulting clear solution was then boiled for ca. 1<sup>1</sup>/<sub>2</sub> h to reduce the volume to 125 mL, and further water was removed on a rotary evaporator under vacuum at 80

<sup>(13)</sup> The synthesis and structure of [(C<sub>5</sub>H<sub>5</sub>)Ti(Mo<sub>5</sub>O<sub>18</sub>)][(n-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>3</sub> have been reported in preliminary communications: (a) Klemperer, W. G.; Shum, W. J. Chem. Soc., Chem. Commun. 1979, 60-1. (b) Day, V. W.; Fredrich, M. F.; Thompson, M. R.; Klemperer, W. G.; Liu, R.-S.; Shum, W. J. Am. Chem. Soc. 1981, 103, 3597-9.
(14) Eliverize M. G.; Klemperer, W. G.; Liu, R.-S.; Shum, W. J. Am. Chem. Soc. 1981, 103, 3597-9.

<sup>(14)</sup> Filowitz, M.; Ho, R. K. C.; Klemperer, W. G.; Shum, W. Inorg. Chem. 1979, 18, 93-103.

<sup>(15)</sup> Liu, R.-S. Ph.D. Dissertation, Columbia University, New York, 1980.



Figure 1. IR spectra of (a)  $[(\eta^5-C_5H_5)Ti(M_05O_{18})][(n-C_4H_9)_4N]_3$  and (b)  $[(\eta^5-C_5H_5)Ti(W_5O_{18})][(n-C_4H_9)_4N]_3$  measured from KBr pellets. See Experimental Section for numerical data.

°C to obtain a moist white solid. This material was thoroughly dried in a vacuum at 60 °C for 24 h. During the drying process, the solid was ground to a powder under a dry dinitrogen atmosphere three times, after ca. 3, 6, and 15 h of drying. The yield was 52 g (71 mmol, 84% based on  $(n-C_4H_9)_4$ NOH). This material is extremely hygroscopic and must be stored in a desiccator. Anal. Calcd for  $C_{32}H_{72}N_2WO_4$ : C, 52.45; H, 9.90; N, 3.82; W, 25.09. Found: C, 52.54; H, 10.05; N, 3.97; W, 24.91.

Preparation of  $[(\eta^5 - C_5H_5)Ti(W_5O_{18})][(n - C_4H_9)_4N]_3$ . Aqueous HCl (0.80 M, 17 mL, 14 mmol) and then a solution of  $(C_5H_5)_2TiCl_2$  (0.68 g, 2.7 mmol) in 20 mL of CH<sub>2</sub>Cl<sub>2</sub> were added rapidly, with vigorous stirring, to a solution of  $(WO_4)[(n-C_4H_9)_4N]_2$  (10 g, 14 mmol) in 60 mL of acetonitrile. The resulting solution turned from a bright red color to a yellow color after ca. 10 min of rapid stirring and was then stirred for a further 10 min, after which solvents were removed under reduced pressure on a rotary evaporator to yield ca. 10 mL of a yellow oil containing some white powder. Crude product was isolated from this suspension by performing a series of four precipitations from n-propyl alcohol as follows. The suspension was diluted with 10 mL of n-propyl alcohol and then poured into 200 mL of diethyl ether with vigorous stirring. The resulting mixture was stirred for ca. 5 min and then allowed to sit undisturbed for ca. 20 min, after which ether, which formed a separate layer, was decanted. After each successive precipitation, the material remaining contained less oil and more solid until after the fourth precipitation only white solid remained. This material was washed with 30 mL of diethyl ether, isolated by suction filtration, and dried in vacuo to give 4.3 g of crude product. To obtain pure, crystalline product, this solid was placed into a 400-mL beaker containing 200 mL of n-propyl alcohol. The resulting suspension was heated to boiling with stirring and then allowed to cool to room temperature without stirring. After 10 h, the suspension was filtered to remove ca. 1.2 g of white solid and the filtrate concentrated to 50 mL by boiling off solvent. The solution obtained was allowed to cool to room temperature and was filtered a second



Figure 2. <sup>17</sup>O NMR spectra of (a)  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})][(n-C_4H_9)N]_3$ and (b)  $[(\eta^5-C_5H_5)Ti(W_5O_{18})][(n-C_4H_9)_4N]_3$ . See Table II for numerical data and spectral parameters. Resonances are assigned with use of the oxygen labeling scheme indicated in the SCHAKAL drawing. Asterisks identify resonances arising from sample decomposition, in (a), and from contamination, in (b).

time to remove a trace amount of white solid. This filtrate was then concentrated to 25 mL, and after it was cooled to room temperature, small, clear, colorless, block-shaped crystals appeared within 2 h. After 24 h, crystals were collected by suction filtration and washed quickly with ca. 10 mL of cold *n*-propyl alcohol and then ca. 20 mL of diethyl ether. A second crop was obtained by combining the 10-mL n-propyl alcohol wash with the mother liquor, reducing the volume to ca. 5 mL by boiling off solvent, and isolating crystals as just described for the first crop. In order to obtain product completely free of n-propyl alcohol, it was necessary to keep the product under vacuum at 60 °C for 24 h. The first and second crops produced 1.2 and 1.0 g of material, respectively, yielding a total of 2.2 g (1.1 mmol, 39% based on tungsten) of product as a white powder. One further crystallization was performed for the microanalytical sample only. Anal. Calcd for  $C_{53}H_{113}N_3TiW_5O_{18}$ : C, 31.09; H, 5.56; N, 2.05; Ti, 2.34; W, 44.89. Found: C, 30.85; H, 5.48; N, 2.01; Ti, 2.13; W, 44.63. IR (KBr, 350-1000 cm<sup>-1</sup>): 962 (m), 942 (vs), 882 (m), 805 (vs), 782 (sh), 436 (s), 380 (m). <sup>1</sup>H NMR (CD<sub>3</sub>CN, 360 MHz):  $\delta$  6.04 (s, 5, C<sub>5</sub>H<sub>5</sub>), 3.14 (m, 24, NCH<sub>2</sub>), 1.63 (m, 24, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.38 (m, 24, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 0.98 (m, 36, CH<sub>3</sub>). <sup>17</sup>O NMR: see Table I and Figure 2b.

Material enriched in <sup>17</sup>O to 6% was prepared from 6% <sup>17</sup>O-enriched aqueous HCl and  $(WO_4)[(n-C_4H_9)_4N]_2$  enriched in <sup>17</sup>O to 6% by stirring 10 g (13.7 mmol) of material in 1.2 mL of 11.2% <sup>17</sup>O-enriched water for

1 h. The enriched water was then degassed on a vacuum line and recovered by distillation at room temperature into a receiving flask maintained at liquid-nitrogen temperature. The initial phases of the preparation, up to removal of reaction solvent on a rotary evaporator, were carried out under dry N2 to avoid isotopic dilution.

X-ray Crystallographic Study<sup>16</sup> of [(n<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)Ti(Mo<sub>5</sub>O<sub>18</sub>)][(n- $C_4H_9_4N_1$  (1). Large, well-shaped yellow single crystals of the CH<sub>2</sub>Cl<sub>2</sub> solvate of  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})][(n-C_4H_9)_4N]_3$  (1) suitable for x-ray diffraction studies were obtained as described above. They are, at 20  $\pm$ 1 °C, tetragonal with a = 25.162 (9) Å, c = 50.380 (10) Å, V = 31897Å<sup>3</sup>, and  $Z = 16 (\mu_a (Mo K\bar{\alpha})^{17a} = 0.96 \text{ mm}^{-1}; d_{calcd} = 1.410 \text{ g cm}^{-3})$ . The systematically absent reflections in the diffraction pattern were those for the uniquely determined noncentrosymmetric space group  $I4_1cd-C_{4r}^{12}$  (No. 110).1

Intensity measurements were made on a Nicolet PI autodiffractometer using 1.0°-wide  $\omega$  scans and graphite-monochromated Mo K $\bar{\alpha}$  radiation for an approximately cube-shaped specimen 0.58 mm on an edge. This crystal was sealed with mother liquor inside a thin-walled glass capillary and mounted on the goniometer head with an edge nearly parallel to the  $\phi$  axis of the diffractometer. A total of 7412 independent reflections having  $2\theta_{Mo K\alpha} < 50.7^{\circ}$  (the equivalent of 0.80 limiting Cu K $\bar{\alpha}$  spheres) were measured in two concentric shells of increasing  $2\theta$ . A scanning rate of 3°/min was used to measure intensities for reflections having  $3^{\circ} < 2\theta$  $< 43.0^{\circ}$  and a rate of 2°/min was used for all others. Each of these 1.0°-wide scans was divided into 19 equal (time) intervals, and those 13 contiguous intervals that had the highest single accumulated count at their midpoint were used to calculate the net intensity from scanning. Background counts, each lasting for one-fourth the total time used for the net scan  $(\frac{13}{19})$  of the total scan time), were measured at  $\omega$  settings 1.0° above and below the calculated  $K\bar{\alpha}$  doublet value for each reflection. The linear absorption coefficient of the crystal for Mo K $\alpha$  radiation is 0.96 mm<sup>-1</sup>, yielding a  $\mu R$  value of 0.344 for a spherical crystal having the same volume as the cube-shaped specimen used for intensity measurements. The absorption of X-rays by a spherical crystal having  $\mu R$ = 0.344 is virtually independent of scattering angle,<sup>19</sup> and deviations from this absorption occasioned by the use of the cube-shaped specimen are practically negligible except for a trivial fraction of the reflections. Under these circumstances, no absorption correction was made and the intensities were reduced to a set of relative squared amplitudes,  $|F_0|^2$ , by means of appropriate Lorentz and polarization corrections.

The structure was solved with use of statistical "direct methods" techniques (MULTAN). Unit-weighted full-matrix least-squares refinement which utilized anisotropic thermal parameters for all non-hydrogen atoms of the anion and isotropic thermal parameters for non-hydrogen atoms of the cations converged to  $R_1$  (unweighted, based on F)<sup>20</sup> = 0.060 and  $R_2$  (weighted, based on F)<sup>20</sup> = 0.071 for 2556 independent reflections having  $2\theta_{MoK\alpha} \leq 43^{\circ}$  and  $I > 3\sigma(I)$ . A difference Fourier synthesis calculated at this point revealed the three non-hydrogen atoms of the CH<sub>2</sub>Cl<sub>2</sub> solvent molecule of crystallization but few chemically reasonable positions for hydrogen atoms. These three solvent non-hydrogen atoms and idealized cyclopentadienyl hydrogen atoms<sup>21</sup> were included in the structural model for all subsequent least-squares refinement cycles. Additional cycles of unit-weighted full-matrix least-squares refinement which employed the more complete  $(2\theta_{Mo Ka} < 50.7^{\circ})$  data set, a least-squares refinable extinction correction<sup>22</sup> of the form  $1/(1 + 2gI_c)^{1/2}$ (where the extinction coefficient, g, was refined to a final value of 7.0  $\times$  10<sup>-8</sup>), isotropic thermal parameters for the five fixed cyclopentadienyl hydrogen<sup>21</sup> atoms and all cation non-hydrogen atoms converged to  $R_1 =$ 0.065 and  $R_2 = 0.074$  for 2927 independent reflections having  $2\theta_{Mo Ka}$  $\leq 50.7^{\circ}$  and  $I > 3\sigma(I)$ . Similar cycles of empirically weighted<sup>23</sup> full-

- (16) See paragraph at end of paper regarding supplementary material.
- "International Tables for X-ray Crystallography"; Kynoch Press: Bir-mingham, England, 1974; Vol. IV: (a) pp 55-66; (b) pp 99-101; (c) (17)pp 149-50. "International Tables for X-ray crystallography"; Kynoch Press: Bir-
- (18)mingham, England, 1969; Vol. I, p 200. "International Tables for X-ray Crystallography"; Kynoch Press: Bir-
- (19)
- The R values are defined as  $R_1 = \sum ||F_0| |F_c|| / \sum |F_0|$  and  $R_2 = \sum ||F_0| |F_c|| / \sum |F_0|$  and  $R_2 = \sum ||F_0| |F_c||^2 / \sum w|F_0|^2|^{1/2}$ , where w is the weight given each reflection. The function minimized is  $\sum w(|F_0| K|F_c|)^2$ , where K is the (20)cale factor.
- (21) The following idealized atomic coordinates were calculated for the five cyclopentadienyl hydrogen atoms assuming sp<sup>2</sup> hybridization of the respective ring carbon and a C-H bond length of 0.95 Å: H<sub>1</sub>, 0.0662, 0.3662, 0.1322; H<sub>2</sub>, 0.1065, 0.3250, 0.0922; H<sub>3</sub>, 0.1961, 0.3591, 0.0868; H<sub>4</sub>, 0.2097, 0.4370, 0.1181; H<sub>5</sub>, 0.1259, 0.4385, 0.1453. These hydrogen atoms were assigned isotropic thermal parameters of 10.0 Å<sup>2</sup> and were not allowed to vary in refinement cycles.
- (22) Zachariasen, W. H. Acta Crystallogr. 1967, 23, 558-64.

matrix least squares gave final<sup>16</sup>  $R_1$  and  $R_2$  values of 0.065 and 0.077, respectively, for 2927 reflections. All structure factor calculations employed recent tabulations of atomic form factors<sup>17b</sup> and anomalous dispersion corrections<sup>17c</sup> to the scattering factors of the Mo, Ti, and Cl atoms

All calculations were performed on an IBM 360/65 or IBM 370/158 computer using the following programs: MAGTAPE, SCALEUP, and SCTFT4, data reduction programs written in this laboratory by V. W. Day; FAME, a Wilson plot and normalized structure factor program by R. Dewar and A Stone; MULTAN, a direct methods program, a modified version of Main, Germain, and Woolfson's program; FORDAP, Fourier and Patterson synthesis program, a modified version of A. Zalkin's program; ORFLSE, full-matrix least-squares refinement program, a highly modified version of Busing, Martin, and Levy's original ORFLS; ORFFE, bond lengths and angles with standard deviations by Busing, Martin, and Levy; ORTEP2, thermal ellipsoid plotting program by C. Johnson; MPLANE, least-squares mean plane calculation program from L. Dahl's group.

## **Results and Discussion**

Synthesis and Characterization. The molybdenum complex  $[(\eta^{5}-C_{5}H_{5})Ti(Mo_{5}O_{18})][(n-C_{4}H_{9})_{4}N]_{3}$  (1) is prepared in CH<sub>2</sub>Cl<sub>2</sub> according to eq 1. Its tungsten analogue,  $[(\eta^5 - C_5 H_5)T_i]$ 

$$5Mo_2O_7^{2-} + 2(C_5H_5)_2TiCl_2 + H_2O \rightarrow 2[(C_5H_5)Ti(Mo_5O_{18})]^{3-} + 2C_5H_6 + 4Cl^{-} (1)$$

 $(W_5O_{18})$  [(*n*-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N], (2), cannot be prepared in an analogous fashion since the ditungstate anion is unknown. Compound 2 is therefore prepared in CH<sub>3</sub>CN from acidified monotungstate anion:

$$5WO_4^{2-} + 5H^+ + (C_5H_5)_2TiCl_2 \rightarrow [(C_5H_5)Ti(W_5O_{18})]^{3-} + C_5H_6 + 2Cl^- + 2H_2O (2)$$

Both compounds 1 and 2 can be obtained as analytically pure. crystalline materials in moderate yields (60% for 1, 40% for 2). As expected for isostructural species, their IR spectra are extremely similar in the 350-1000-cm<sup>-1</sup> region (see Figure 1). The tungsten compound is very stable toward hydrolysis and can, for example, be refluxed in a 1:2 volume:volume mixture of H<sub>2</sub>O and CH<sub>3</sub>CN for at least 3 h without decomposition detectable by IR or NMR spectroscopy. The molybdenum compound, however, is moisture sensitive and decomposes completely under the same conditions in less than 1 h.

<sup>17</sup>O NMR Spectra. Compounds 1 and 2 display completely resolved <sup>17</sup>O NMR spectra shown in Figure 2 which are easily assigned to chemically nonequivalent oxygen types by comparison with chemical shift data for  $M_6O_{19}^{2-}$  and  $VM_5O_{19}^{3-}$ , M = Mo, W.14 Resonances for the two nonequivalent OM terminal oxygens  $(O_E \text{ and } O_F \text{ in Figure 2})$  can be assigned with use of intensity arguments. Resonances for the two nonequivalent bridging OM<sub>2</sub> oxygens (O<sub>B</sub> and O<sub>C</sub> in Figure 2), however, have equal intensities and cannot be uniquely assigned to specific oxygens.

Several workers have noted crude correlations between <sup>17</sup>O chemical shifts in oxomolybdenum(VI) units and  $Mo^{VI}$ -O bond lengths, bond strengths, and/or oxygen charge.<sup>13b,14,24-27</sup> When a given Mo-O bond is weakened, implying a longer bond and more negative charge on the oxygen, the chemical shift for the oxygen in question is displaced upfield. Here, for example, the OMo terminal oxygen resonances for the  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^3$ trianion appear 99 and 70 ppm upfield relative to the 933 ppm<sup>14</sup> resonances for terminal oxygens in the Mo<sub>6</sub>O<sub>19</sub><sup>2-</sup> dianion. Curiously, the chemical shift for the unique OMo terminal oxygen

- (24) Filowitz, M.; Klemperer, W. G.; Messerle, L.; Shum, W. J. Am. Chem. Soc. 1976, 98, 2345-6.
- Miller, K. F.; Wentworth, R. A. D. Inorg. Chem. 1979, 18, 984-8. (26) Fedotov, M. A.; Maksimovskaya, R. I.; Molchanova, G. A.; Alyasova, A. K. Izv. Akad. Nauk SSSR, Ser. Khim. **1980**, 709–12.
- (27)Freeman, M. A.; Schultz, F. A. Reilley, C. N. Inorg. Chem. 1982, 21, 567-76.

<sup>(23)</sup> Empirical weights were calculated from the equation  $\sigma = \sum_{0}^{3} a_{n} |F_{0}|^{n} =$  $18.0 - (7.32 \times 10^{-2})F_0 + (2.23 \times 10^{-4})|F_0|^2 - (1.30 \times 10^{-7})|F_0|^3$ , the  $a_n$ being coefficients derived from the least-squares fitting of the curve  $||F_0|$  $|F_c|| = \sum_{i=1}^{3} a_n |F_o|^n$ , where  $F_c$  values were calculated from the fully refined model with use of unit weighting and an  $I > 3\sigma(I)$  rejection criterion



Figure 3. Perspective ORTEP drawing of the solid-state structure for non-hydrogen atoms of the  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^{3-}$ anion as observed in crystalline 1. All atoms are represented by thermal vibration ellipsoids drawn to encompass 50% of the electron density. Oxygen and carbon atoms are labeled by their subscripts: capital letters and numbers for oxygens and only numbers for carbons.

 $(O_E \text{ in Figure 2})$  lies upfield relative to the chemical shift for the four equivalent OMo terminal oxygens ( $O_F$  in Figure 2), even though the  $O_E$  oxygen is more remote from the Ti<sup>IV</sup> center. This implies that the local increase in negative surface charge implied by the replacement of an  $[OMo^{VI}]^{4+}$  unit in  $Mo_6O_{19}^{2-}$  by a  $[(\eta^5-C_5H_5)Ti^{IV}]^{3+}$  unit to form  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^{3-}$  (see D) is delocalized to the distal  $O_E$  oxygen to a greater extent than to a proximal  $O_F$  oxygen. Reexpressed in terms of bond strengths, the distal  $Mo-O_E$  bond is weakened more than a proximal  $Mo-O_F$  bond. An X-ray crystallographic study of 1 was undertaken in an effort to determine the mechanism of this unusual effect.

Solid-State Structure of  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})][(n-C_4H_9)_4N]_3$ -CH<sub>2</sub>Cl<sub>2</sub>. The X-ray structural analysis established that single crystals of I are composed of discrete  $(n-C_4H_9)_4N^+$  cations, CH<sub>2</sub>Cl<sub>2</sub> solvent molecules of crystallization, and  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^3$ - anions shown in Figure 3. Final atomic coordinates that resulted from this structural analysis are presented with estimated standard deviations in Table II; anisotropic thermal parameters for non-hydrogen atoms of the  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^3$ - anion and CH<sub>2</sub>Cl<sub>2</sub> solvent molecule are listed in Table III.<sup>16</sup> The numbering scheme used to designate atoms of 1 is shown in Figures 3 and 4.<sup>16</sup>

Since the  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^{3-}$  anion in 1 represents a structural modification of the well-known Mo<sub>6</sub>O<sub>19</sub><sup>2-</sup> anion in which one Mo atom and its terminally bonded oxygen have been replaced by a  $(\eta^5 - C_5 H_5)$ Ti unit, it should be possible to assess the structural and electronic effects of such a substitution by comparing structural parameters for both anions. Of the three  $Mo_6O_{19}^{2-}$  salts that have been examined crystallographically,<sup>4</sup> the cyclophosphazene complex<sup>4a</sup> has yielded the most precise structural parameters and will therefore be used in the present comparisons. In this structure (see B), the Mo-O<sub>t</sub> terminal oxygen bond lengths do not differ significantly, varying between 1.676 (4) and 1.678 (4) Å, as is the case also for the Mo-O<sub>c</sub> central oxygen bond lengths, which vary between 2.312 (4) and 2.324 (4) Å. The Mo-O<sub>b</sub> bridging oxygen bond lengths display significant variations, however, ranging between 1.855 (4) and 2.005 (4) Å. These variations are not random, and their systematic nature is evident from inspection of bond lengths in the three sets of mutually perpendicular, coplanar  $Mo_4(O_b)_4$  oxomolybdenum rings present in the centrosymmetric  $Mo_6O_{19}^{2-}$  structure.<sup>28</sup> These are shown in Chart I, where long single bonds (1.928-2.005 Å) are repreChart I



sented by dashed lines and short single bonds (1.855-1.928 Å) are represented by a solid plus a dashed line; i.e., the structure's 1.928-Å average Mo-O<sub>b</sub> bond length is used to categorize long and short single bonds. A pattern of bond length alternation is clearly evident in each oxomolybdenum ring. Note that there is relatively less variation in  $O_b \dots O_b$  distances that range from 2.614 to 2.690 Å. The Mo-O<sub>b</sub> bond alternation is therefore best viewed as a case of classical off-center displacement<sup>30</sup> of metals in a relatively rigid, close-packed oxygen framework as opposed to semibridging oxygen ligand behavior in a rigid metal framework.<sup>31</sup> Note also that the degree of bond length alternation in one of the oxomolybdenum rings shown in Chart I differs significantly from that in the other two. If  $\Delta$  is defined as the difference between average long and short bonds within an oxomolybdenum ring,  $\Delta$ = 0.144 Å in (a) but only 0.053 Å in (b) and 0.038 Å in (c). At an individual molybdenum center, therefore, bond length alternation occurs predominantly as trans bond alternation. The trans character of this bond alternation is in part a consequence of off-center displacement; if oxygen centers are fixed, displacement of a molybdenum toward one oxygen implies equivalent displacement away from the trans oxygen. Orbital arguments, of course, also favor trans as opposed to cis bond length alternation.

Systematic variation of bond lengths in the  $[(\eta^5-C_5H_5)Ti-(Mo_5O_{18})]^{3-}$  structure is more difficult to establish due to the relatively low precision of the structure determination. Trends are apparent, however, from the C<sub>4</sub>-averaged bond lengths given in Table IV. Analysis of M<sub>4</sub>(O<sub>b</sub>)<sub>4</sub> rings following the same procedure used for Chart I but using C<sub>4</sub>-averaged bond lengths yields Chart II, where single bonds are categorized as short or long relative to the structure's 1.93 (2,5,14,24) Å<sup>29</sup> average M-O<sub>b</sub> bond length—a value identical with that observed in Mo<sub>6</sub>O<sub>19</sub><sup>2-</sup>. In the Mo<sub>4</sub>(O<sub>B</sub>)<sub>4</sub> ring, bond length alternation follows the same

<sup>(28)</sup> See ref 5c for a more complete treatment.

<sup>(29)</sup> The first number in parentheses following an averaged value of a bond length or angle is the root-mean-square estimated standard deviation of an individual datum. The second and third numbers, when given, are the average and maximum deviations from the averaged value, respectively. The fourth number represents the number of individual measurements that are included in the average value.

<sup>(30)</sup> Megaw, H. D. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1968, B24, 149-53 and references cited therein.

<sup>(31)</sup> Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry", 4th ed.; Wiley: New York, 1980; pp 1057-60.

| atom              | fra               | actional coordina     | ites              |                           | atom              | fractional coordinates |                          |                   |                                        |  |  |
|-------------------|-------------------|-----------------------|-------------------|---------------------------|-------------------|------------------------|--------------------------|-------------------|----------------------------------------|--|--|
| type <sup>b</sup> | 10 <sup>4</sup> x | 10⁴y                  | 10 <sup>4</sup> z | $B,^{c}$ Å <sup>2</sup>   | type <sup>b</sup> | 10 <sup>4</sup> x      | 10 <sup>4</sup> y        | 10 <sup>4</sup> z | <i>B</i> , <sup>c</sup> Å <sup>2</sup> |  |  |
|                   |                   |                       |                   |                           |                   |                        |                          |                   |                                        |  |  |
|                   |                   |                       |                   | Anio                      | n                 |                        |                          |                   |                                        |  |  |
| $Mo_1$            | 2695.9 (9)        | 2422.7 (10)           | 1389.9 (9)        | 5.1                       | O <sub>D1</sub>   | 2328 (7)               | 2946 (8)                 | 1215 (3)          | 5.4                                    |  |  |
| Mo <sub>2</sub>   | 1500.8 (10)       | 2108.8 (10)           | $1600.0 (-)^{a}$  | 5.5                       | O <sub>D2</sub>   | 1339 (7)               | 2655 (8)                 | 1383 (4)          | 5.7                                    |  |  |
| Mo <sub>3</sub>   | 1561.8 (10)       | 3060.9 (11)           | 2045.2 (8)        | 5.6                       | O <sub>D3</sub>   | 1373 (8)               | 3451 (7)                 | 1762 (4)          | 5.5                                    |  |  |
| Mo <sub>4</sub>   | 2755.3 (10)       | 3381.4 (9)            | 1835.7 (6)        | 4.7                       | $O_{D4}$          | 2356 (7)               | 3719 (6)                 | 1590 (4) 4.7      |                                        |  |  |
| Mo <sub>5</sub>   | 2504.9 (10)       | 2152.4 (8)            | 2022.2 (8)        | 4.7                       | OE                | 2791 (8)               | 1715 (7)                 | 2245 (4)          | 5.3                                    |  |  |
| Ti                | 1771.8 (20)       | 3321.7 (19)           | 1421.4 (11)       | 4.9                       | O <sub>F1</sub>   | 3130 (9)               | 2181 (9)                 | 1172 (5)          | 6.5                                    |  |  |
| OA                | 2115 (6)          | 2763 (6)              | 1707 (3)          | 4.0                       | O <sub>F2</sub>   | 1062 (8)               | 1638 (8)                 | 1537 (5)          | 7.4                                    |  |  |
| O <sub>B1</sub>   | 2092 (8)          | 1936 (7)              | 1356 (4)          | 4.9                       | 0 <sub>F3</sub>   | 1169 (9)               | 3264 (9)                 | 2287 (4)          | 7.5                                    |  |  |
| O <sub>B2</sub>   | 1160 (7)          | 2457 (8)              | 1893 (4)          | 6.2                       | O <sub>F4</sub>   | 3226 (7)               | 3812 (7)                 | 1942 (4)          | 5.5                                    |  |  |
| O <sub>B3</sub>   | 2170 (7)          | 3499 (6)              | 2096 (4)          | 4.7                       | $C_1$             | 992 (13)               | 3751 (15)                | 1242 (6)          | 6.6                                    |  |  |
| O <sub>R4</sub>   | 3111 (6)          | 2996 (6)              | 1568 (4)          | 4.3                       | C,                | 1223 (12)              | 3516 (13)                | 1029 (6)          | 5.3                                    |  |  |
| OCI               | 2887 (7)          | 2010 (6)              | 1707 (4)          | 4.5                       | C,                | 1710 (15)              | 3718 (12)                | 994 (d)           | 6.5                                    |  |  |
| 0                 | 1924 (8)          | 1758 (6)              | 1865 (4)          | 5.3                       | ۲                 | 1798 (12)              | 4141 (14)                | 1167 (6)          | 5.9                                    |  |  |
| 0                 | 1968 (7)          | 2509 (7)              | 2224 (4)          | 6.0                       | C,                | 1331 (15)              | 4138 (10)                | 1315 (6)          | 5.0                                    |  |  |
| O <sub>C4</sub>   | 2926 (6)          | 2778 (6)              | 2063 (4)          | 4.4                       | 5                 | · · · ·                | ( )                      | - (-)             |                                        |  |  |
| - 64              | frac              | tional coordinat      |                   | fract                     | onal coordinate   |                        |                          |                   |                                        |  |  |
| atom              | 101               | 103                   | 103               | D ( \$ )                  | atom              | 103                    |                          | 103               | <b>D</b> ( <b>8</b> )                  |  |  |
| type              | 105x              | 10-y                  | 10°2              | <i>B</i> , A <sup>2</sup> | type              | 10'x                   | 10'y                     | 10°z              | <i>B</i> ,° A <sup>2</sup>             |  |  |
|                   |                   |                       |                   | Cation                    | 1                 |                        |                          |                   |                                        |  |  |
| N                 | 461(1)            | 238 (1)               | 180 (1)           | 10 (1)                    | Ċ.                | 518 (3)                | 100(3)                   | 192 (1)           | 17(2)                                  |  |  |
| C.                | 500(2)            | 196 (1)               | 185 (1)           | 8(1)                      | C <sub>g1</sub>   | 395(4)                 | 215(4)                   | 241(2)            | 27(4)                                  |  |  |
|                   | 411(2)            | 235(2)                | 199 (1)           | 11(1)                     | C.2               | 496 (3)                | 388 (3)                  | 191(2)            | 18(2)                                  |  |  |
|                   | 492 (2)           | 285(2)                | 188 (1)           | 10(1)                     | C 3               | 460 (3)                | 220(3)                   | 102(2)            | 20(2)                                  |  |  |
| C as              | 433(2)            | 231(2)                | 154(1)            | 10(1)                     | C.                | 515 (5)                | 50 (4)                   | 102(2)<br>177(3)  | $\frac{20}{33}(5)$                     |  |  |
|                   | 475(2)            | 141(3)                | 178 (1)           | 15(2)                     | Ca                | 397(3)                 | 242(3)                   | 274(2)            | 23(3)                                  |  |  |
|                   | 436(2)            | 242(2)                | 228 (1)           | 14(2)                     |                   | 469 (4)                | 425(4)                   | 208(2)            | 29(4)                                  |  |  |
| C 12              | 450(2)<br>459(2)  | 335(2)                | 178(1)            | 14(2)                     |                   | 487 (4)                | 202(4)                   | 86 (2)            | 23(3)                                  |  |  |
| Сы                | 482(2)            | 241(2)                | 130 (1)           | 13(1)                     | 04                | 407 (4)                | 202 (4)                  | 00(2)             | 25 (5)                                 |  |  |
| - 04              |                   |                       |                   |                           |                   |                        |                          |                   |                                        |  |  |
| <b>N</b> 7        | <b>a10</b> (1)    | 202 (1)               |                   | Cation                    | 2                 | 2 ( 2 )                | <b>2</b> 00 ( <b>2</b> ) | <b>52</b> (1)     |                                        |  |  |
| N                 | 210(1)            | 202 (1)               | 47 (1)            | 8(1)                      | $C_{g1}$          | 343 (2)                | 280 (2)                  | 53 (1)            | 13 (1)                                 |  |  |
| $C_{al}$          | 260 (2)           | 233 (1)               | 58 (1)            | 9(1)                      | C <sub>82</sub>   | 86 (3)                 | 169 (3)                  | 90 (1)            | 17(1)                                  |  |  |
| C <sub>a2</sub>   | 175 (2)           | 195 (2)               | 70 (1)            | 13 (1)                    | C <sub>g3</sub>   | 130 (2)                | 310 (2)                  | 14 (1)            | 14 (1)                                 |  |  |
| C <sub>a3</sub>   | 185 (1)           | 238 (1)               | 25 (1)            | 8 (1)                     | C <sub>g4</sub>   | 278 (4)                | 66 (4)                   | 29 (2)            | 10 (2)                                 |  |  |
| C <sub>a4</sub>   | 228 (2)           | 155 (2)               | 34 (1)            | 9 (1)                     | Cdi               | 392 (2)                | 294 (2)                  | 33 (1)            | 15 (2)                                 |  |  |
| C <sub>b1</sub>   | 304 (2)           | 247 (2)               | 39 (1)            | 12(1)                     | $C_{d2}$          | 29 (3)                 | 129 (3)                  | 85 (2)            | 22 (3)                                 |  |  |
| C <sub>b2</sub>   | 131 (3)           | 161 (3)               | 65 (2)            | 19 (2)                    | $C_{d3}$          | 107 (3)                | 363 (3)                  | 16 (2)            | 19 (2)                                 |  |  |
| C <sub>b3</sub>   | 159 (2)           | 290 (2)               | 34 (1)            | 13 (1)                    | $C_{d4}$          | 291 (4)                | 36 (4)                   | 45 (2)            | 29 (4)                                 |  |  |
| C <sub>64</sub>   | 261 (3)           | 119 (3)               | 52 (1)            | 18 (2)                    |                   |                        |                          |                   |                                        |  |  |
|                   |                   |                       |                   | Cation                    | 3                 |                        |                          |                   |                                        |  |  |
| N                 | 238 (1)           | 31 (1)                | 191 (1)           | 11 (1)                    | Cgl               | 349 (3)                | -34 (3)                  | 228 (2)           | 18 (2)                                 |  |  |
| C <sub>a1</sub>   | 272 (2)           | -12 (2)               | 201 (1)           | 13 (1)                    | $C_{s2}^{o}$      | 151 (3)                | 69 (3)                   | 249 (1)           | 19 (2)                                 |  |  |
| C <sub>a2</sub>   | 208 (2)           | 62 (2)                | 209 (1)           | 12(1)                     | $C_{a_3}$         | 335 (3)                | 88 (3)                   | 138 (1)           | 15 (2)                                 |  |  |
| C <sub>33</sub>   | 270 (3)           | 66 (2)                | 171 (1)           | 15 (2)                    | C.4               | 133 (4)                | 21 (4)                   | 127 (2)           | 27 (3)                                 |  |  |
| $C_{a4}^{}$       | 207 (2)           | 5 (2)                 | 170 (1)           | 12(1)                     | $\tilde{C_{d_1}}$ | 381 (4)                | -23 (3)                  | 255 (2)           | 24 (3)                                 |  |  |
| C <sub>b1</sub>   | 310 (3)           | 8 (3)                 | 218 (1)           | 15 (2)                    | C <sub>d2</sub>   | 96 (6)                 | 56 (6)                   | 248 (3)           | 42 (6)                                 |  |  |
| C <sub>b2</sub>   | 170 (2)           | 24 (2)                | 226 (1)           | 14 (2)                    | C <sub>d3</sub>   | 372 (4)                | 72 (4)                   | 117 (2)           | 24 (3)                                 |  |  |
| C <sub>b3</sub>   | 291 (4)           | 45 (4)                | 145 (2)           | 22 (3)                    | C <sub>d4</sub>   | 96 (4)                 | 10 (4)                   | 149 (2)           | 27 (3)                                 |  |  |
| С ы               | 166 (3)           | 37 (3)                | 158 (2)           | 18 (2)                    |                   |                        |                          | . /               | . /                                    |  |  |
|                   |                   |                       |                   | Salvar                    | .+                |                        |                          |                   |                                        |  |  |
| C                 | 370 (7)           | 273 (4)               | 112 (1)           | 11.2                      |                   | 311 (1)                | 426 (1)                  | 88 (1)            | <b>77 3</b>                            |  |  |
|                   | 327(2)<br>396(1)  | $\frac{273}{374}$ (1) | 109(1)            | 20.8                      | C12               | 511 (1)                | 720 (1)                  | 00(1)             | 44.3                                   |  |  |
|                   | 570 (1)           | 577(1)                | 107 (1)           | 20.0                      |                   |                        |                          |                   |                                        |  |  |

<sup>a</sup> Figures in parentheses are the estimated standard deviations in the last significant digit. <sup>b</sup> Atoms are labeled in agreement with Figures 3 and 4.<sup>16</sup> <sup>c</sup> B is the equivalent isotropic thermal parameter. For non-hydrogen atoms of the anion and CH<sub>2</sub>Cl<sub>2</sub> solvent of crystallization, which are modeled with anisotropic thermal parameters of the form  $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl]$ , this is the equivalent isotropic thermal parameter calculated from  $B = 4[V^2 \det(\beta_{ij})]^{1/3}$ ; for atoms of the cations, this is the isotropic temperature factor that was actually refined. <sup>d</sup> Mo<sub>2</sub> was used to define the origin of the unit cell along  $\vec{c}$ . This is therefore a symmetry-required value and is listed without an estimated standard deviation.

pattern observed in Chart I. This pattern is not found in the  $TiMo_3O_4$  rings. The pattern observed, however, is systematic and is a direct consequence of replacing a tetravalent  $[Mo^{VI}O_1]^{4+}$  unit (see A) with a trivalent  $[Ti^{IV}(C_5H_5)]^{3+}$  unit (see D). Since the  $Ti-O_D$  bonds are weaker than Mo-O single bonds, the  $Mo_g-O_D^{32}$  bonds are short, and the  $Mo_g-O_C^{32}$  bonds trans to them are weakened. This in turn leads to a shortening of the  $Mo_5-O_C$  bonds. Since all four  $Mo_5-O_C$  bonds are shortened, constant valence at  $Mo_5$  can be approximated only if the  $Mo_5-O_t$  and/or  $Mo_5-O_A$ 

bonds are weakened. Both are in fact longer than their  $Mo_g^{32}$  counterparts:  $d_{Mo_3-Q_E} = 1.73$  (2) Å,  $d_{Mo_8-O_F} = 1.66$  (2,1,3,4) Å,<sup>29</sup>  $d_{Mo_3-O_A} = 2.42$  (2) Å,  $d_{Mo_8-O_A} = 2.33$  (2,0,0,4) Å. A trans bond length alternation mechanism can therefore account for the charge delocalization scheme suggested by the <sup>17</sup>O NMR data discussed above.

The pattern of bond length alternation observed in  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^{3-}$  induced by substitution (see Chart IIb) is also present in the  $[M^{IV}(W_5O_{18})_2]^{8-}$  structures,  $M=Ce,^{33}$  U^{34}

<sup>(32)</sup> The four "girdle" molybdenum atoms (Mo<sub>1</sub>, Mo<sub>2</sub>, Mo<sub>3</sub>, and Mo<sub>4</sub>) are collectively referred to as Mo<sub>g</sub> atoms.

<sup>(33)</sup> Iball, J.; Low, J. N.; Weakley, T. J. R. J. Chem. Soc., Dalton Trans. 1974, 2021-4.

| av <sup>c</sup>    | 3.250 (5,3,7,4)                                                                                 | 3.297 (4,4,8,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.288 (4,6,11,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 153.5 (8,3,4,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 152.9 (8,5,5,2)                                                                                                                                           | 97 0 (6 7 4 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 88.0 (6,2,2,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                           | 89.9 (6,2,2,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 176.0 (8,1,1,2)                                                        | 117.4 (9,2,4,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114.8 (9,8,17,4)<br>114.8 (9,8,17,4)<br>1114.3 <sup>c</sup> See ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| valuc              | $\left. \begin{array}{c} 3.250 (5) \\ 3.253 (5) \\ 3.253 (5) \\ 3.243 (6) \end{array} \right\}$ | 3.293 (6)<br>3.305 (4)<br>3.297 (4)<br>3.293 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.284 (3)<br>3.299 (4)<br>3.285 (4)<br>3.284 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 153.3 (8)<br>153.7 (8)<br>153.8 (8)<br>153.1 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 153.4 (8)<br>152.4 (8)                                                                                                                                    | 92.0 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92.1 (6)<br>91.6 (6)                      | 87.9 (6)<br>88.4 (6)<br>88.0 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.7 (5) 7<br>89.9 (6)                                                                                      | 90.2 (6)<br>90.0 (6)<br>89.6 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 175.0 (0))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 176.1 (8)                                                              | $\left.\begin{array}{c}117.3 \\ 117.3 \\ 117.8 \\ 117.3 \\ 117.3 \\ 117.1 \\ 9)\end{array}\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113.1 (9)<br>114.8 (9)<br>114.8 (8)<br>116.4 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| param <sup>b</sup> | Ti…Mo <sub>1</sub><br>Ti…Mo <sub>2</sub><br>Ti…Mo <sub>3</sub><br>Ti…Mo <sub>4</sub>            | Mo <sub>5</sub> Mo <sub>1</sub><br>Mo <sub>5</sub> Mo <sub>2</sub><br>Mo <sub>5</sub> Mo <sub>3</sub><br>Mo <sub>5</sub> Mo <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mo <sub>1</sub> Mo <sub>2</sub><br>Mo <sub>1</sub> Mo <sub>4</sub><br>Mo <sub>2</sub> Mo <sub>3</sub><br>Mo <sub>3</sub> Mo <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Oc1M01OD1<br>OC2M02OD2<br>OC3M02OD2<br>OC3M02OD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0C1 M0, 0C3<br>0C2 M0, 0C3                                                                                                                                | TiO <sub>A</sub> Mo <sub>1</sub><br>TiO <sub>A</sub> Mo <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TiOAMo₃<br>TiOAMo₄                        | Mo <sub>s</sub> OAMo <sub>1</sub><br>Mo <sub>s</sub> OAMo <sub>2</sub><br>Mo <sub>s</sub> OAMo <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mo <sub>s</sub> O <sub>A</sub> Mo <sub>4</sub><br>Mo <sub>1</sub> O <sub>A</sub> Mo <sub>2</sub>            | Mo <sub>1</sub> OAMo4<br>Mo2OAMo3<br>Mo3OAMo4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TiO <sub>A</sub> Mo <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mo <sub>2</sub> OAMo <sub>3</sub><br>Mo <sub>2</sub> OAMo <sub>4</sub> | Mo, U <sub>C1</sub> Mo1<br>Mo, O <sub>C2</sub> Mo2<br>Mo, O <sub>C3</sub> Mo3<br>Mo, O <sub>C3</sub> Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo <sub>1</sub> O <sub>B1</sub> Mo <sub>2</sub><br>Mo <sub>2</sub> O <sub>B2</sub> Mo <sub>3</sub><br>Mo <sub>3</sub> O <sub>B3</sub> Mo <sub>4</sub><br>Mo <sub>4</sub> O <sub>B4</sub> Mo <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| avc                | 1.91 (2,1,2,4)                                                                                  | 2.33 (2,0,1,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.66 (2,1,3,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1,8,19,8)                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.2 (7,1,3,4)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.4 (7,3,5,4)                                                                                              | 76.5 (7,4,9,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117.2 (10,5,9,4)                                                       | 154.7 (8,9,14,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aholed in avreemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| value              | $\left.\begin{array}{c}1.89 \\ 1.93 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.2)\end{array}\right\}$ | 2.19 (2)<br>2.33 (2)<br>2.32 (2)<br>2.33 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} 2.33 \\ 2.42 \\ 1.66 \\ 1.65 \\ 1.65 \\ 1.69 \\ 2.9 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 75.8 (6)<br>78.6 (7)<br>78.4 (7)<br>78.3 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78.7 (7)                                                                                                                                                  | (0) (0)<br>77.6 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78.2 (7)                                  | 75.5 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75.6(7)<br>74.9(7)                                                                                          | $ \begin{array}{c} 76.9 (7) \\ 75.6 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.5 (7) \\ 76.$ | 76.9 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $116.4 (9) \\117.1 (10) \\117.3 (10) \\118.1 (9) $                     | $153.9 (8) \\ 156.1 (8) \\ 155.1 (8) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.7 (7) \\ 153.$                                                                                                  | b Atoms are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| param <sup>b</sup> | hs<br>Mos-Oc<br>Mos-Oc<br>Mos-Oc<br>Oc                                                          | Ti-OA<br>Mo1-OA<br>Mo2-OA<br>Mo5-OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mostor<br>Mostor<br>Mostor<br>Mostor<br>Mostor<br>Mostor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S     | OAM01OB4<br>OAM01OB4<br>OAM02OB1<br>OAM02OB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $O_{\mathbf{A}}^{\mathbf{A}} O_{\mathbf{B}}^{2} O_{\mathbf{B}}^{2} O_{\mathbf{B}}^{2}$<br>$O_{\mathbf{A}}^{\mathbf{M}} O_{\mathbf{B}} O_{\mathbf{B}}^{2}$ | UAM040B3<br>OAM040B4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UAMo,UC<br>OAMo,OC<br>OAMo,OC             | $O_{A}^{M0_4}O_{C4}^{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OAMO <sup>2</sup> OD <sup>2</sup><br>OAMO <sup>3</sup> OD <sup>3</sup><br>OAMO <sup>2</sup> OD <sup>4</sup> | OAMo,OC1<br>OAMo,OC1<br>OAMo,OC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OAMO, OCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TiOD1 M01<br>TiOD2 M02<br>TiOD3 M03<br>TiOD4 M04                       | $\begin{array}{c} O_{B_4} M_{0_1} O_{B_1} \\ O_{B_1} M_{0_2} O_{B_2} \\ O_{B_2} M_{0_3} O_{B_3} \\ O_{B_3} M_{0_4} O_{B_4} \\ O_{B_3} M_{0_4} O_{B_4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ionificant divit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | Lengt<br>2.00 (2,2,3,4)                                                                         | 1.81 (2,2,3,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.95 (2,1,3,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Angle | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84.9 (8,8,13,8)                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | 89.4 (8,13,16,8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | 103.5 (8,9,12,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86.7 (8,7,13,4)                                                        | 178.0 (9,6,12,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106.2 (10,7,15,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| value              | $\left.\begin{array}{c}1.99\ (2)\\2.01\ (2)\\2.01\ (2)\\1.97\ (2)\end{array}\right\}$           | $\left. \begin{array}{c} 1.84 & (2) \\ 1.80 & (2) \\ 1.79 & (2) \\ 1.81 & (2) \end{array} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\left.\begin{array}{c}1.97 (2)\\1.92 (2)\\1.95 (2)\\1.95 (2)\\1.95 (2)\\1.73 (2)\end{array}\right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 83.6 (7)<br>85.9 (8)<br>85.0 (8)<br>85.0 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84.3 (8)<br>85.9 (8)                                                                                                                                      | 83.8 (7)<br>85.2 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87.8 (8)<br>90.9 (8)<br>87.8 (8)          | 91.0 (8)<br>88.7 (8)<br>90.1 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.3 (7)<br>90.9 (8)                                                                                        | $102.3 (8) \\ 104.6 (8) \\ 104.3 (8) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.9 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.7 (8)<br>85.7 (8)<br>87.0 (8)<br>88.0 (8)                           | $\left.\begin{array}{c} 177.8 \\ 177.7 \\ 9 \\ 179.2 \\ 177.3 \\ 177.3 \\ 8 \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $179.2 (8) \\ 106.0 (10) \\ 106.2 (10) \\ 105.1 (10) \\ 107.7 (8) \\ 107.4 (10) \\ 107.4 (10) \\ 107.4 (10) \\ 107.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4 (10) \\ 100.4$ |
| param <sup>b</sup> | Ti-O <sub>D</sub><br>Ti-O <sub>D</sub><br>Ti-O <sub>D</sub>                                     | Mo <sub>1</sub> -OD1<br>Mo2-OD2<br>Mo3-OD3<br>Mo4-OD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mo <sub>1</sub> -OC <sub>1</sub><br>Mo <sub>2</sub> -OC <sub>2</sub><br>Mo <sub>3</sub> -OC <sub>3</sub><br>Mo <sub>4</sub> -OC <sub>4</sub><br>Mo <sub>5</sub> -OE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | $\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OC3M03OB2<br>OC3M03OB2<br>OC3M03OB3                                                                                                                       | $\begin{array}{c} \mathrm{O}_{\mathbf{C}4}\mathrm{Mo}_{4}\mathrm{O}_{\mathbf{B}3}\ \mathrm{O}_{\mathbf{C}4}\mathrm{Mo}_{4}\mathrm{O}_{\mathbf{B}4}\ \mathrm{O}_{\mathbf{C}4}\mathrm{Mo}_{4}\mathrm{O}_{\mathbf{B}4}\ \mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}_{\mathbf{C}4}\mathrm{O}$ | OD1 M01 OB4<br>OD1 M01 OB1<br>OD2 M01 OB1 | 0D <sub>2</sub> Mo <sub>2</sub> 0B <sub>2</sub><br>0D <sub>3</sub> Mo <sub>3</sub> 0B <sub>2</sub><br>0D <sub>3</sub> Mo <sub>3</sub> 0B <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $O_{D_4}M_{O_3}O_{B_3}O_{D_4}M_{O_3}O_{B_4}$                                                                | OEMosOC1<br>OEMosOC2<br>OEMosOC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O <sub>E</sub> Mo, O <sub>C</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OC1 M05 OC2<br>OC2 M05 OC3<br>OC3 M05 OC4<br>OC4 M05 OC4               | $\begin{array}{c} O_A Mo_1 O_{F_1} \\ O_A Mo_2 O_{F_2} \\ O_A Mo_3 O_{F_3} \\ O_A Mo_3 O_{F_3} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O <sub>A</sub> Mo <sub>5</sub> OE<br>OF <sub>1</sub> Mo <sub>1</sub> OD <sub>1</sub><br>OF <sub>2</sub> Mo <sub>2</sub> OD <sub>2</sub><br>OF <sub>3</sub> Mo <sub>3</sub> OD <sub>3</sub><br>OF <sub>4</sub> Mo <sub>4</sub> OD <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| av <sup>c</sup>    | 2.42 (3,2,4,5)                                                                                  | 1.92 (2,2,4,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.99 (2,1,1,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 104.7 (-,10,14,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           | 75.4 (7,4,6,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 86.3 (8,5,8,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150.7 (8,3,3,2)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.3 (9,7,21,8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        | 100.0 (9,4,9,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uino individual entri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| value              | 2.41 (3)<br>2.46 (3)<br>2.38 (3)<br>2.43 (3)                                                    | $2.40(3) \\ 2.12(-) \\ 1.96(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92(2) \\ 1.92$ | $\begin{pmatrix} 1.90 \\ 1.89 \\ 1.98 \\ 1.98 \\ 1.98 \\ 1.99 \\ 20 \\ 1.99 \\ 20 \\ 1.99 \\ 20 \\ 1.99 \\ 20 \\ 1.99 \\ 20 \\ 1.99 \\ 20 \\ 1.99 \\ 20 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 \\ 1.99 $ |       | $105.2 (-) \\ 103.5 (-) \\ 103.8 (-) \\ 106 (-) \\ (-) \\ 106 (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-$ | 178.0 (-)<br>76.0 (7) \                                                                                                                                   | 75.0 (7)<br>75.0 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.4 (7) <b>)</b><br>86.2 (8) <b>)</b>    | $86.5 (7) \\ 87.1 (8) \\ 85.5 (7) \\ 85.5 (7) \\ 85.5 (7) \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 85.5 \\ 8$ | 151.0 (8)<br>150.4 (8)                                                                                      | 102.5 (9)<br>102.9 (9)<br>103.1 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.2 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 101.7 (9) \\ 102.4 (8) \\ 102.9 (8) \end{array} $   | $\left\{\begin{array}{c} 100.6 \ (9) \\ 100.1 \ (10) \\ 100.1 \ (10) \\ 100.1 \ (8) \\ 100.1 \ (8) \\ 100.1 \ (8) \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\ 100.1 \\$ | renthees follo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| param <sup>b</sup> |                                                                                                 | 11-C <sub>5</sub><br>11-C <sub>8</sub> d<br>Mo <sub>1</sub> -O <sub>B1</sub><br>Mo <sub>2</sub> -O <sub>B2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mo0B<br>Mo0B<br>Mo0B<br>Mo0B<br>Mo0B<br>B<br>Mo0B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | CgTIOD1 <sup>d</sup><br>CgTIOD2 <sup>d</sup><br>CgTIOD3 <sup>d</sup><br>CoTIOD3 <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CeTiOA <sup>d</sup><br>O. TiO                                                                                                                             | 0A TIOD2<br>0A TIOD2<br>0A TIOD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0ATiOD4<br>0D1 TiOD2                      | 0 <sub>D1</sub> Ti0 <sub>D4</sub><br>0 <sub>D2</sub> Ti0 <sub>D3</sub><br>0 <sub>D3</sub> Ti0 <sub>D4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 <sub>D1</sub> Ti0 <sub>D3</sub><br>0 <sub>D2</sub> Ti0 <sub>D4</sub>                                      | ${O_{F_1}Mo_1O_{B_4} \over O_{F_1}Mo_1O_{B_1} O_{B_1} O_{D_1} O_{D_1} O_{D_2} O_{$                                                                                                                                                                                                  | $O_{F_2}Mo_2O_{B_2}O_{B_2}O_{D_2}Mo_2O_{B_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2}O_{D_2$ | OF3M03OB3<br>OF3M03OB3<br>OF4M04OB3<br>OF4M04OB3                       | $\begin{array}{c} O_{F_1} Mo_1 O_{C_1} \\ O_{F_2} Mo_1 O_{C_2} \\ O_{F_3} Mo_3 O_{C_3} \\ O_{F_4} Mo_4 O_{C_4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v<br>v<br>v<br>v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

4062 Inorganic Chemistry, Vol. 24, No. 24, 1985

(E). Since the Ce<sup>IV</sup>-O and U<sup>IV</sup>-O bonds in these complexes are



weaker than the  $Ti^{IV}$ -O bonds in  $[(C_5H_5)Ti(Mo_5O_{18})]^{3-}$ , substitution-induced trans bond length alternation in the Ce<sup>IV</sup> and U<sup>IV</sup> complexes is more pronounced than in the Ti<sup>IV</sup> complex (see Chart III).

Assuming that the response to substitution of  $[M^{VI}O_t]^{4+}$  by the lower valent units discussed above can be extended to  $M^{VI}_{6}O_{19}^{2-}$ derivatives in general, the trans bond alternation mechanism can be invoked as an explanation for two general phenomena observed in polyoxohexametalate chemistry. The first, remote activation of polyoxohexametalate surfaces, is exemplified by the approximately equal stabilities of the three  $\{[(CH_3)_5C_5]Rh(cis Nb_2W_4O_{19})$ <sup>2-</sup> isomers.<sup>9</sup> In each isomer, the Rh<sup>III</sup> center is bound to three doubly bridging oxygens in the cis-Nb<sub>2</sub>W<sub>4</sub>O<sub>19</sub><sup>4-</sup> ligand: one isomer uses three OW<sup>V1</sup><sub>2</sub> oxygens, the second uses one OW<sup>V1</sup><sub>2</sub> and two  $OW^{VI}Nb^{V}$  oxygens, and the third uses one  $ONb^{V}_{2}$  and two OW<sup>V1</sup>Nb<sup>V</sup> oxygens. In the absence of a mechanism for charge delocalization, simple electrostatic considerations dictate that oxygens bonded to Nb<sup>v</sup> should be more basic than oxygens bonded to WVI and the RhIII should bind preferentially to oxygens bound to pentavalent centers. The absence of such a preference can be explained by trans bond length alternation schemes for charge transmission in  $Nb_2W_4O_{19}^{4-}$  which delocalize negative charge, helping to avoid electrostatically unfavorable localizations of negative charge. A second general phenomenon that can similarly be explained by trans bond length alternation schemes is the effect of substitution on <sup>17</sup>O NMR chemical shifts of remote terminal oxygens in species such as  $VW_5O_{19}^{3-,14} VMo_5O_{19}^{3-,14} V_2W_4O_{19}^{4-,7}$ and Nb<sub>2</sub>W<sub>4</sub>O<sub>19</sub><sup>4-8,9</sup> Precisely the same effects have been discussed above for the  $[(\eta^5-C_5H_5)Ti(Mo_5O_{18})]^3$ - anion, and the explanation outlined there can be transferred directly to these other systems. We note finally the Ti<sup>IV</sup> coordination geometry. The most

striking feature here is the 2.19 (2) Å Ti-O<sub>A</sub> central oxygen bond, which is much shorter than the corresponding 2.319(4,4,7,3) Å Mo-O<sub>C</sub> central oxygen bond length in  $Mo_6O_{19}^{2-}$ . This may arise in part from the weak  $Mo_5-O_A$  bond (see above) but could also



**Chart III** 

arise from the availability of a  $3d_{z^2}$  Ti orbital which does not interact strongly with the  $C_5H_5$  ring.<sup>35</sup> In Mo<sub>6</sub>O<sub>19</sub><sup>2-</sup>, the corresponding 4d<sub>z<sup>2</sup></sub> Mo orbital interacts strongly with the O<sub>t</sub> terminal oxygen (see A) and is therefore less available for O<sub>C</sub> central oxygen bonding. The 2.00 (2,2,3,4) Å Ti- $O_D$  average bond length is comparable to the 1.97-Å Ti-O average distance observed in  $(C_5H_5)_6Ti_6O_8$ <sup>36</sup> the 2.42 (3,2,4,5) Å Ti-C average distance is also unexceptional.37

Acknowledgment. W.G.K. acknowledges the National Science Foundation for partial support of the research. Acknowledgment is also made to the University of Illinois NSF Regional NMR Facility (Grant CHE 79-16100). We are also grateful to Dr. Egbert Keller for providing a copy of his SCHAKAL program and Suzanne M. Moenter for preparing the SCHAKAL drawings. Daniel Speiser was instrumental in developing the  $(WO_4)[(n-C_4H_9)_4N]_2$ preparation. Dr. Charles Besecker is responsible for many details of the preparation of compound 1. Dr. Jenny Green explained to us the nature of bonding at Ti in compound 1.

Registry No. 1, 71344-02-0; 1.CH<sub>2</sub>Cl<sub>2</sub>, 98576-56-8; 2, 98576-55-7;  $(\alpha - Mo_8O_{26})[(n - C_4H_9)_4N]_4$ , 59054-50-1;  $(Mo_2O_7)[(n - C_4H_9)_4N]_2$ , 64444-05-9; (C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>TiCl<sub>2</sub>, 1271-19-8; WO<sub>3</sub>, 1314-35-8; (WO<sub>4</sub>)[(*n*-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>2</sub>, 60619-93-4.

Supplementary Material Available: Crystal structure analysis report, anisotropic thermal parameters (Table III), bond lengths and angles in the cations and solvent molecule (Table V), ORTEP drawings of cations (Figure 4), and a listing of structure factors for  $[(\eta^5-C_5H_5)-$ TiMo<sub>5</sub>O<sub>18</sub>][(n-C<sub>4</sub>H<sub>9</sub>)<sub>4</sub>N]<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub> (29 pages). Ordering information is given on any current masthead page.

3498-3503 and references cited therein.

Golubev, A. M.; Murandyan, L. A.; Kazanskii, L. P.; Torchenkova, E. A.; Simonov, V. I.; Spitsyn, V. I. Sov. J. Coord. Chem. (Engl. Transl.) 1977, 3, 715-20. (34)

<sup>(35)</sup> Clack, D. W.; Warren, K. D. Struct. Bonding (Berlin) 1980, 39, 1-41.
(36) Huffman, J. C.; Stone, J. G.; Krussell, W. C.; Caulton, K. G. J. Am. Chem. Soc. 1977, 99, 5829-31.
(37) Steffen, W. L.; Chun, H. K.; Fay, R. C. Inorg. Chem. 1978, 17, 200 arcs.